Glossary
K. Fuller 99
Science Vocabulary
A concept is a coherent idea, a big idea, a unified
structure of understanding. A number of facts (factoids when
taken individually) connected together by their interrelationships form
a concept. Smaller concepts are in turn related to each other to
construct ever larger concepts. Ideally we end with a conceptual
structure encompassing all knowledge. In reality we always have
gaps, discontinuities, and inconsistencies.
example: The concept "photosynthesis" includes smaller concepts, such as light energy, destruction of water, chemical energy, the law of conservation of matter, and many more. All connected by cause and effect relationships.
Since the sum of all human experience is far to extensive for the human mind to encompass consciously at one time, we divide it into smaller, more convenient blocks which we call subject areas. For purposes of instruction, subject areas are further broken into smaller blocks. It is necessary then to reassemble the blocks into a unified whole in order to make what one has learned useful. Education is not complete until each subject area (to the extent it has been mastered) is integrated into all the other areas, making a conceptually unified whole . Despite the rites of passage along the way, education is a never ending quest.
In the infamous experiment of growing one bean plant in the light and one in the dark to see which grows "best" (i.e. tallest), students are astounded to find that the bean germinated in the dark grows much taller than the one germinated in the light. They had not thought of the food stored in the seed. The most significant factor commonly ignored in this classroom classic is individual differences among bean plants. This is easily controlled by using 100 plants in each group. But, have the light and dark environments been controlled for relative humidity, air movement, and temperature?
Having controlled all significant factors, only the experimental variable is different for the control and experimental groups. In the example, the experimental variable is the amount of light. If properly done, any difference in average growth of the groups must result from the difference in amount of light, there would be more than two groups, each with a different amount of light.
But how do you decide which grew
"better"? By height? By total mass? By mass of
fruit?
It is necessary to decide before beginning.
Let's see if I can get this right. Heat is the transference (That really means "transfer", but superfluous syllables apparently add authority to the argumentation.) of thermal energy from one body to another. If the two bodies are in contact, it is not difficult to understand that the more energetic jostling of molecules in the body with a higher temperature will transfer some of their thermal energy to the cooler molecules at the plane of contact. But, when does this process of conduction become heat? As for convection, the thermal energy is moved from one place to another because the fluid body containing it is moved, it is not being transferred to another body, therefore no heat is involved.
When speaking of radiant heat we have a very perplexing problem. In the photosphere of Sun, thermal energy is converted into electromagnetic radiation. If this radiation is absorbed by another body and converted into thermal energy, we are told that thermal energy has been transferred through interplanetary space, and heat has occurred. In Sun's photosphere, thermal energy has been converted into 3 photons of blue light, and radiated away. Eight minutes later the 3 photons strike a leaf on Earth. The first is absorbed by a carbon atom in a cellulose molecule, causing it to become thermally agitated, heat has occurred. The second is absorbed by chlorophyl, its energy is used to split a water molecule, chemical not thermal energy, no heat has occurred. The third photon is reflected back into interplanetary space. Since it might be absorbed and converted into thermal energy by dust in the Andromeda Galaxy, we shall have to wait a long time to find out whether heat is occurring or not.
Somehow I find this quite unsatisfactory. Can anyone clarify this for me? Please?
An hypothesis is a possible explanation of why things happen the way they do. Taking into consideration all known principles of science, and known data relating to the situation in question, what might be the true cause and effect relationship operating in this case. The hypothesis is not the prediction, it is the explanation of why the prediction seems reasonable. When the expected experimental results are difficult to predict quantitatively from the hypothesis, the researcher may use the "null hypothesis", which states that the experimental variable will have no effect on the results.
(examples are coming)
Science Is ...
by K. Fuller 1969
Science is one of many ways we have of learning about ourselves and our
environment. Some of the other ways are called; art, philosophy, religion,
history, ...
Science is not WHAT we study, science is HOW we study.Science is:
1. A goal - An attempt to describe the physical universe and the relations of its parts in
such a way that events can be predicted and controlled.
(theory - "pure science")2. A process - The gathering of information and the testing of theory by means of
observation and experimentation .
(research)3. A product - A body of knowledge organized systematically, so that it is easy to find
any particular item.
(library)4. A tool - The use of what we have learned to control our environment for the good of
all mankind, ideally.
(technology)
None of the four parts of science will work by itself, all four must work together to be
effective.
Data that raise a question
This would be in the introduction of your report. What was already known that caused you to ask the
question.
The question
It is very important to consider the wording of the question very carefully. It is easy to get useless
answers by asking the wrong questions. Everything else in your report is guided by the question.
Additional data organized to help find an answer to the question
This is the background information related to the question. Have others found answers to the same or
similar questions? How is the question related to the general and specific principles of science? Have
others developed techniques that might help you in finding an answer to the question?
A possible answer to the question (hypothesis )
Based on the information available, this could be the answer to the question. It may have been
suggested by someone else (give them credit) or it may have occurred to you while doing your research.
Remember an hypothesis always explains “why”, not just what. The hypothesis describes a cause and
effect relationship.
The hypothesis restated in “If ... Then...” form
This is a statement of the hypothesis in a form that makes a specific prediction which will be true only if
the hypothesis is true (ideally). The prediction then suggests a way to test the hypothesis.
Test the hypothesis by experiment or observation
The test is an experiment or observation designed to test the prediction made by the hypothesis. It must
be carefully controlled so that only one factor is being changed. This helps you to determine cause and
effect relationships. A single run of an experiment or observation is usually not enough to be sure that
the results are reliable. A very important part of your report is the careful, detailed plan of the test,
including the measurements to be made.
The results of the test, the hypothesis is supported, weakened
Sometimes the results of the test are not clear, you cannot be sure whether the hypothesis is supported or
weakened. You need to find another test. If the prediction is clearly wrong, you need another
hypothesis. If the prediction is correct, you may want further tests to confirm the hypothesis, or you may
be ready for another question.
The next hypothesis, or
If the hypothesis is rejected, you need to go back to the available data to find another possible answer.
There has to be an explanation that works, if you can find it.
The next question
Either by the answer to this question, or by the data used to find the answer, other questions should be
raised. Even though there is no attempt to answer them now, the questions should be asked. Along with
the results of your tests, these questions are included in the conclusion of your report as a guide to
further research.
On entering a previously unexplored field, science begins with extensive observation. The observations are recorded and compiled into a catalog . The cataloged phenomena are then classified, sorted into groups with significant similarities, and a logical hierarchy of relationships is worked out. Then a theoretical framework is constructed which explains the observed relationships and interactions in terms of basic principles of science (laws of nature). Finally, theory is used guide development of a more complete understanding of the field and to tie together the various fields of study into a universal framework of cause and effect, the goal of all science .
A theory is an explanation of cause and effect
relationships among phenomena, objects and events, within the area of
study.
To qualify as a scientific theory, it is necessary that the theory can
be used to predict observational and experimental results which are
inconsistent with the predictions of competing theories. The
larger the field of phenomena encompassed by a theory, the more
powerful (useful) it is. Accepted theories are often stated in
terms of "laws of nature" or "principles of science".
The practice of learning the new words before reading them sounds, at first, like a good strategy. However, it requires more time and effort than the results can justify. Meanings of new words make more sense, and are more easily retained when learned in context. If a word occurs only once or a few times, better far to spend the effort on comprehending the concept being explained, rather than on a trivia factoid without a context. Also important, it is a technique which can only be used with text books, not in real life reading.
[Home] [Modern myths] [Science project ] [Probing for thought] [Links]
Did you find anything useful? Something to add? To correct?